Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.

Identifieur interne : 000621 ( Main/Exploration ); précédent : 000620; suivant : 000622

Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.

Auteurs : Víctor G Mez-Toribio [Espagne] ; Ana B. García-Martín ; María J. Martínez ; Angel T. Martínez ; Francisco Guillén

Source :

RBID : pubmed:19376892

Descripteurs français

English descriptors

Abstract

A simple strategy for the induction of extracellular hydroxyl radical (OH) production by white-rot fungi is presented. It involves the incubation of mycelium with quinones and Fe(3+)-EDTA. Succinctly, it is based on the establishment of a quinone redox cycle catalyzed by cell-bound dehydrogenase activities and the ligninolytic enzymes (laccase and peroxidases). The semiquinone intermediate produced by the ligninolytic enzymes drives OH production by a Fenton reaction (H(2)O(2) + Fe(2+) --> OH + OH(-) + Fe(3+)). H(2)O(2) production, Fe(3+) reduction, and OH generation were initially demonstrated with two Pleurotus eryngii mycelia (one producing laccase and versatile peroxidase and the other producing just laccase) and four quinones, 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DBQ), and 2-methyl-1,4-naphthoquinone (menadione [MD]). In all cases, OH radicals were linearly produced, with the highest rate obtained with MD, followed by DBQ, MBQ, and BQ. These rates correlated with both H(2)O(2) levels and Fe(3+) reduction rates observed with the four quinones. Between the two P. eryngii mycelia used, the best results were obtained with the one producing only laccase, showing higher OH production rates with added purified enzyme. The strategy was then validated in Bjerkandera adusta, Phanerochaete chrysosporium, Phlebia radiata, Pycnoporus cinnabarinus, and Trametes versicolor, also showing good correlation between OH production rates and the kinds and levels of the ligninolytic enzymes expressed by these fungi. We propose this strategy as a useful tool to study the effects of OH radicals on lignin and organopollutant degradation, as well as to improve the bioremediation potential of white-rot fungi.

DOI: 10.1128/AEM.02137-08
PubMed: 19376892
PubMed Central: PMC2698328


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.</title>
<author>
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
</author>
<author>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
</author>
<author>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19376892</idno>
<idno type="pmid">19376892</idno>
<idno type="doi">10.1128/AEM.02137-08</idno>
<idno type="pmc">PMC2698328</idno>
<idno type="wicri:Area/Main/Corpus">000630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000630</idno>
<idno type="wicri:Area/Main/Curation">000630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000630</idno>
<idno type="wicri:Area/Main/Exploration">000630</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.</title>
<author>
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
</author>
<author>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
</author>
<author>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzoquinones (metabolism)</term>
<term>Edetic Acid (metabolism)</term>
<term>Ferric Compounds (metabolism)</term>
<term>Fungi (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Hydroxyl Radical (metabolism)</term>
<term>Laccase (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Peroxidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide édétique (métabolisme)</term>
<term>Benzoquinones (métabolisme)</term>
<term>Champignons (métabolisme)</term>
<term>Composés du fer III (métabolisme)</term>
<term>Laccase (métabolisme)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Radical hydroxyle (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzoquinones</term>
<term>Edetic Acid</term>
<term>Ferric Compounds</term>
<term>Hydrogen Peroxide</term>
<term>Hydroxyl Radical</term>
<term>Laccase</term>
<term>Oxidoreductases</term>
<term>Peroxidase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide édétique</term>
<term>Benzoquinones</term>
<term>Champignons</term>
<term>Composés du fer III</term>
<term>Laccase</term>
<term>Myeloperoxidase</term>
<term>Oxidoreductases</term>
<term>Peroxyde d'hydrogène</term>
<term>Radical hydroxyle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A simple strategy for the induction of extracellular hydroxyl radical (OH) production by white-rot fungi is presented. It involves the incubation of mycelium with quinones and Fe(3+)-EDTA. Succinctly, it is based on the establishment of a quinone redox cycle catalyzed by cell-bound dehydrogenase activities and the ligninolytic enzymes (laccase and peroxidases). The semiquinone intermediate produced by the ligninolytic enzymes drives OH production by a Fenton reaction (H(2)O(2) + Fe(2+) --> OH + OH(-) + Fe(3+)). H(2)O(2) production, Fe(3+) reduction, and OH generation were initially demonstrated with two Pleurotus eryngii mycelia (one producing laccase and versatile peroxidase and the other producing just laccase) and four quinones, 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DBQ), and 2-methyl-1,4-naphthoquinone (menadione [MD]). In all cases, OH radicals were linearly produced, with the highest rate obtained with MD, followed by DBQ, MBQ, and BQ. These rates correlated with both H(2)O(2) levels and Fe(3+) reduction rates observed with the four quinones. Between the two P. eryngii mycelia used, the best results were obtained with the one producing only laccase, showing higher OH production rates with added purified enzyme. The strategy was then validated in Bjerkandera adusta, Phanerochaete chrysosporium, Phlebia radiata, Pycnoporus cinnabarinus, and Trametes versicolor, also showing good correlation between OH production rates and the kinds and levels of the ligninolytic enzymes expressed by these fungi. We propose this strategy as a useful tool to study the effects of OH radicals on lignin and organopollutant degradation, as well as to improve the bioremediation potential of white-rot fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19376892</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.</ArticleTitle>
<Pagination>
<MedlinePgn>3944-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02137-08</ELocationID>
<Abstract>
<AbstractText>A simple strategy for the induction of extracellular hydroxyl radical (OH) production by white-rot fungi is presented. It involves the incubation of mycelium with quinones and Fe(3+)-EDTA. Succinctly, it is based on the establishment of a quinone redox cycle catalyzed by cell-bound dehydrogenase activities and the ligninolytic enzymes (laccase and peroxidases). The semiquinone intermediate produced by the ligninolytic enzymes drives OH production by a Fenton reaction (H(2)O(2) + Fe(2+) --> OH + OH(-) + Fe(3+)). H(2)O(2) production, Fe(3+) reduction, and OH generation were initially demonstrated with two Pleurotus eryngii mycelia (one producing laccase and versatile peroxidase and the other producing just laccase) and four quinones, 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DBQ), and 2-methyl-1,4-naphthoquinone (menadione [MD]). In all cases, OH radicals were linearly produced, with the highest rate obtained with MD, followed by DBQ, MBQ, and BQ. These rates correlated with both H(2)O(2) levels and Fe(3+) reduction rates observed with the four quinones. Between the two P. eryngii mycelia used, the best results were obtained with the one producing only laccase, showing higher OH production rates with added purified enzyme. The strategy was then validated in Bjerkandera adusta, Phanerochaete chrysosporium, Phlebia radiata, Pycnoporus cinnabarinus, and Trametes versicolor, also showing good correlation between OH production rates and the kinds and levels of the ligninolytic enzymes expressed by these fungi. We propose this strategy as a useful tool to study the effects of OH radicals on lignin and organopollutant degradation, as well as to improve the bioremediation potential of white-rot fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gómez-Toribio</LastName>
<ForeName>Víctor</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García-Martín</LastName>
<ForeName>Ana B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martínez</LastName>
<ForeName>María J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martínez</LastName>
<ForeName>Angel T</ForeName>
<Initials>AT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guillén</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016227">Benzoquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3352-57-6</RegistryNumber>
<NameOfSubstance UI="D017665">Hydroxyl Radical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3T006GV98U</RegistryNumber>
<NameOfSubstance UI="C004532">quinone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9G34HU7RV0</RegistryNumber>
<NameOfSubstance UI="D004492">Edetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.2</RegistryNumber>
<NameOfSubstance UI="D042845">Laccase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>KJ3C78Y22Z</RegistryNumber>
<NameOfSubstance UI="C019179">Fe(III)-EDTA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016227" MajorTopicYN="N">Benzoquinones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004492" MajorTopicYN="N">Edetic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017665" MajorTopicYN="N">Hydroxyl Radical</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042845" MajorTopicYN="N">Laccase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19376892</ArticleId>
<ArticleId IdType="pii">AEM.02137-08</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02137-08</ArticleId>
<ArticleId IdType="pmc">PMC2698328</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 1996;20(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8904290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jun;63(6):2166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9172335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(5):1185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Jul 10;320(2):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7625845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1981 Jun 15;128(2):347-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6266877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Aug;61(8):3076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Jan;69(5):573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Oct;69(10):6257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Mar 1;339(1):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9056249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1999 Sep 24;75(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Sep 10;322(1):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(20):6691-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Oct 10;257(19):11455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Dec;31(Pt 6):1335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Oct;69(10):6025-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1990 Jan;32(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1366392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Apr 15;237(2):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Sep;268(17):4787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Nov 20;531(3):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2005;31(4):197-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Feb;66(2):524-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10653713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 May;32(3):501-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Oct;57(1-2):20-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11693920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Jun;153(Pt 6):1772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jan;66(1):170-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Oct;65(10):4458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1990;73(1):53-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2105855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Apr;71(4):1775-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15812000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Mar 5;446(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10100613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia. 1981 Dec 15;37(12):1233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7035210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Nov 1;383(1):142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11097187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1984 Dec 15;224(3):761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6098266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</noCountry>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000621 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000621 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19376892
   |texte=   Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19376892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020